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ABSTRACT
Let G and H C G be two real semisimple groups defined over Q. As-
sume that H is the group of points fixed by an involution of G. Let
x C L*(H\G) be an irreducible representation of G and let f € 7 be a
K-finite function. Let T’ be an arithmetic subgroup of G. The Poincaré
series Ps(g) = ZHnr\r‘ f(vg) is an automorphic form on I'\G. We show
that P; is cuspidal in some cases, when H NT\H is compact.

Introduction

Let G be a real simple group defined over Q and T an arithmetic subgroup. Then
I'\G has a finite volume. Let P be a maximal parabolic subgroup in G and let
N be its unipotent radical. The subgroup P is called cuspidal if ' N N\N is
compact. Let L2(T'\G) be the space of square integrable functions f on I'\G

such that
| stgan =0
TAN\N

for all cuspidal parabolic subgroups of G. It is well-known that L3(T'\G), the
space of cusp forms, decomposes as a sum of irreducible representations of G.
Let 7 be an involution on G and H the group of points fixed by 7. Put X =
H\G. Let L}(X) be the maximal submodule of L?(X) such that it decomposes
as a sum of irreducible representations of G. The description of L3(X) is known

and it is due to Flensted-Jensen, Oshima and Matsuki.
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Let P be a maximal parabolic subgroup of G such that H N N = {1}. Put
M, = HNP. There is a Langlands decomposition P = M AN such that M; C M.
Let f € L%(X). Consider

Mg) = /N F(ng)dn.

Obviously, f¥ might not be defined for every f but we are going to ignore this
problem for a moment. Note that fV is a function on M;N\G. Since the
group A acts from the left on L?(M; N\G), the spectrum of G on L*(M; N\G)
is continuous and therefore the intertwining map f ~ fV should vanish on the
discrete spectrum L3(X).

Next, suppose that H is Q-compact. Then I' N H\H is compact. In that case

the following implication is a simple consequence of the Hilbert theorem 90:
*) I'N N\N is compact = HNN = {1}

Let f € L%(X). Consider the Poincaré series (disregarding the question of

convergence):

Plg)= Y f(r9).

Hnor\r
In view of the statement (*) the cuspidality of Py follows at once from the van-
ishing of fV.

In this paper we study the case G = SOy(n +1,1) and H = SO¢(n,1). In the
first section we give a construction of a part of L3(X) following Flensted-Jensen
[F]. In the second section we study some convergence questions related to the
study of the map f — f¥. In the third section we show the vanishing of fV for
integrable discrete series. In the fourth section we construct examples of cusp
forms. Unfortunately, by Hasse-Minkowski theorem, an arithmetic subgroup T,
such that T'\G is not compact and such that H NT\T is compact can be chosen
only for n = 2 and 3. In the case n = 3, the cusp forms of SO(4,1) obtained are
non-tempered.

A classical way to construct automorphic forms is via ©-lift. Since the spec-
trum of SOp(n + 1,1) on L%(X) can be described as the ©-lift from SL(2) (see
[H]), it is natural to conjecture that the cusp forms constructed in this paper
are the ©-lift of automorphic forms on SL(2). In fact, Piatetski-Shapiro [P] has
shown that the O-lift from SL(2) gives cusp forms only when n < 3, and this is

compatible with our results.
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Finally, the following remark is due. The map f +— fV has been used by several
people, most notably by Harish-Chandra and Gelfand and his collaborators to

study Plancherel formula for symmetric spaces (see [G]).
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NOTATION: For f and g, two positive functions, f <X g means that c < 5 < %

for some constant ¢ > 0.

1. Constructions of discrete series

Let R be the field of real numbers and ¢ = —z2+z%+---+22% ., a quadratic form.
Let G = SO¢(q) = SOg(n + 1,1). The Cartan involution 8 on G is given by the
conjugation by the diagonal matrix diag(—1,1,...,1). Let 7 be the involution
given by the conjugation by the diagonal matrix diag(1,...,1,~1). Let K and
H be the groups of points fixed by the involutions 6 and 7. Obviously,

K=50(%+---+22) and H=50y(-z2 + 22 +--- +22).

Let Go be the group of points fixed by the involution §r. Let g denote the Lie
algebra of G. We have the following decompositions into +1 and —1 eigenspaces
for 6§ and 7:

g=k+p,
g=h+q.

Clearly, k and h are Lie algebras of K and H and go = hNnk + q N p is the Lie
algebra of G. The vector space qN p is one dimensional. Let S € pNq be such

that
cosht ... sinht
exp(tS) = : : )
sinht ... cosht

Let L=HNK. Then L = $O(z} + --- + 22) and Gy = Lexp(q N p). Let p be
a holomorphic representation of K¢ = SO(n + 1, C). Obviously, both H and K

are subgroups of K¢, and p induces a representation of K and H.
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THEOREM (Flensted-Jensen): [F| There is a bijection f° — f between the fol-

lowing two spaces of functions on G:

(1) The space of real analytic functions f on H\G which transform as p under
the action of K from the right.
(2) The space of real analytic functions f® on K\G which transform as p
under the action of H from the right.
The bijection is characterized by f | Gy = f° | Go. Moreover, if f° is equivariant
under the action of Z(g), the center of the universal enveloping algebra U(g),

then f is Z(g)-equivariant as well.

Therefore, to construct a representation on H\G, we have to construct f°.
First, we recall the construction of principal series representations for H. Let
i = —z}+ 22 +---+ 22 Then H = SO¢(q1). Let e be a vector such that
q1(e) = 0. Let P = MAN be the subgroup of H stabilizing the line Re. Then
P is a parabolic subgroup and A could be identified with R as follows: Let n
be the Lie algebra of N. If X € n and a € A then Ad(a)X = a(a)X. The map
a — a{a) is the desired identification. It can be checked that ae = a{aje.

The Principal series I, s € C is given by the following:
I, = {f: H - C| f(mang) = a(a)***F" f(g),man € MAN}

Let V(g;) C R™*! be the cone defined by the equation ¢; = 0. It is easy to

see that T _ -1 can be also realized as

Iz ={f: V(@) > C| f(yzo,-..,yzn) = y" f(20,...,2a),y € R}.

PROPOSITION: Let m be a positive integer. Then I_,,_n-1 contains a finite
2
dimensional representation of H.

Proof: I_, _ o1 contains Fi,,, the space of homogeneous polynomials of degree

m. |

Remark: Note that F), contains the L fixed vector given by the function z§.

Let P be a parabolic subgroup of G such that A C H and PNH = (M n
H)A(N n H) is a parabolic subgroup of H. Let J, denote the principal series
representation for G:

J, = {f : G — C| f(mang) = a(a)** % f(g),man € MAN}.
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We have a natural H-invariant map J, — I, 1 given by f — f |u. Recall that

there is an H-invariant pairing
(, ) i xI.4>C

given by
(foy fos) = / Fo(Dfs(D)dl, Fao € Las.
L

Therefore, we have an H invariant pairing
{, }:meJm.;%_)—»C

Let v e I_ =1 and w € Jm4z-1 be L and K invariant vector respectively.

m— 5=
Normalize v and w such that v({) = 1,l € L and w(k) = 1,k € K. By the

remark, v € F,. Define f2, by the following formula:

fo(9) = (v,97 w).

The function f2, is not zero since f2(1) = vol L. It is clearly Z(g) equivariant,
right H-finite function on K\G. Let f,, be the function on H\G corresponding
to fO via Flensted-Jensen duality. To show that f,, generates a discrete series in
L*(H\G) suffices to check that f,, is square integrable. We need the following

proposition:

ProprosSITION ([F]): Let dh and dk be the Haar measures on H and K. We have

the following integration formula on G:

/Gf(g)dg=/H/R/Kf(hexp(tS')k)dkcosh"tdtdh.

Since K is compact to check the integrability of f,, suffices to show that

/ |f2 (exp tS)|? cosh™ tdt < oo.
R
We have that

fl(exptS) = /Lw(lexp(—tS))dl = vol(L)w(exp(-tS))
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since L is a normal subgroup of Gy. To compute w(exp(—1S)) we have to write
exp(—tS) = mnak. Let

e = c Rn+2

1
1
0
0

and P be the parabolic stabilizing the line Re;. Let || || be the norm on R™*2

given by 22 + 2 +--- + 22, . If ¢ = mnak then ||g7e1|| = a(a)~!||e1]|. Since

| exp(tS)e1]|? = cosh2t it follows that |f2(exptS)| x (cosh2t)~3(m+n=1) %

(cosh#)~(m+n—1_ Therefore, we have obtained the following theorem:

THEOREM: The function f,, generates a discrete series representation in
L*(H\G) if m > 0. The function f, is integrable if m > 1.

2. The constant term

Let Q € Z(g) be the Casimir operator. Then f,;, = Ap fm for some real number
Am. Let P = M AN be a parabolic subgroup of G such that H NN = {1}. Let
f be a function on H\G. Define fV, the constant term of f:

) = /N F(ng)dn.

The purpose of this section is to prove the following
PROPOSITION: Let m > 0. Then fX is a smooth function and QfN =\, fN.

The proof consists of several steps. Any ¢ € G can be written as ¢ =
hexp(tS)k. Consider the vector

0

The stabilizer of e; in G is precisely H. On the other hand

cosht ... sinht sinht
( : : >e2 =( P
sinht ... cosht cosht
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1

Therefore ||gez]|?> = cosh2t < cosh®t. Let C be any compact subset in G.

Then

| fm(ng)| =< g~ In " Yea|| (7D < |[ney |~ forall g € C.
If we can show that ||[n=le,||~(™+"=V is an integrable function on N then |fm |V
is a continuous function by the Lebesgue dominated convergence theorem. We

need the following:

LEMMA: Let | | be any norm on n, the Lie algebra of N. Let X € n. Then
[l exp(X)ezl| < |X|2.

Proof: To study N we choose the form ¢ = 22 + --- + 22 — 2292,4,. Then n
can be chosen so that an element X € n has the form
0 z¢1,...,2p, O
)
X = and | X|P=z2}4+-. 422

Tn

0

0 ... 1
Y=( .
0

By direct observation, if e is a vector such that Y'e = 0, then there exists X € n
such that Xe = 0.

Then X? = |X|?Y where

Claim: 1If e is a vector such that Stabg(e) = H and HN N = {1} then Ye # 0.
Indeed, if Ye = 0, then there would be X € n such that Xe = 0 as well. Hence

exp(X)e = e and exp(X) € H which is a contradiction. We can now finish the

proof of the lemma:

1X|?

X| o v
7 Yeof| < XI5 1

[lexp(X)eal| = llez + Xea +

Let B be a unit ball in n. If m > 0 then

/ |X|~Gm+2n=2gX < co.
n—-B

Therefore |f;n|V is a continuous function.
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Proof of the Proposition: It is well known that there exists a smooth compactly

supported function @ on G such that « * f,, = f,,. Here

o* fulg) = /G o) fu(g2)ds.

Since |fn |V is continuous and a compactly supported function, it follows from
Fubini theorem that

fm = (a* fm)¥ =ax f).
Since X(a * fN) = (Lxa) * fN, where Lx denotes the differentiation from the

left, it follows that f is a smooth function and QfY = X, fN. The proposition

is proved. |

3. The vanishing result

Let P = M AN be a parabolic subgroup in G such that H N N = {1}. In this

section we prove the following theorem:
THEOREM: Ifm > 1 then fN = 0.
We need the following proposition.

PROPOSITION: Let P = M AN be a parabolic subgroup of G such that HNN =
{1} Let o denote the origin (H1) of the space H\G. Then

(1) oN A is an open set in H\G

(2) fN € C°(NM\G) i.e.

N is left M invariant.

Proof: It is easy to see that dim H\G =dim NA. Let A, = HNNA. If A, #0
then A; = A since A; NN = {1} and A is connected. Let a; be the Lie algebra

of A;. We have the triangular decompositions
g=n; +m+a;+n and h=n;Nnh+mNh+a;+n Nh

Obviously n; = n. Since nj Nh # 0 we get nN h # 0, a contradiction. The
first part is proved. To prove the second part, let M; = HN P. Then dim M; =
dim M. Since M1 N NA = {1} and M is connected we get M; - P\NA =M is
an isomorphism. The proposition is proved. |

Proof of the theorem: Consider the function ¢(a) = fN(a),a € A. We claim
that ¢ = 0.
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LEMMA: Let G be a simple group and P = M AN a parabolic subgroup. Let
g = n~ 4+ m+ a+ n be the corresponding decomposition of the Lie algebra of
G. There exist D € U(a) of second order such that

Q- Qu — D € ncli(g),

where §Qp is the Casimir operator for M. ]

Since € is G invariant operator we have A, ,I,Y =0 ,I,Y = Lq f,I,Y . The function

f,I,Y is left M and N invariant. Hence Dy = A,,. We know that oNA is an
open set in H\G. The G invariant measure on H\G restricts to NA invariant
measure on oNA. Therefore, it is dnd®a. Since f,, is absolutely integrable
function on H\G it follows that ¢ is integrable function on A. On the other
hand, ¢ is a solution of an ordinary differential equation on A and therefore a
linear combination of exponential functions. In particular, ¢ can be integrable
only if ¢ = 0. The same conclusion can be obtained for ¢,(a) = fN(ag) for all

g. The theorem is proved.

4. Application to cusp forms on ¢

Let T be a discrete subgroup of G such that vol(I'\G) < oo and vol(I'N H\H) <
oo. ¥ f € C(H\G) N L'(H\G) define Poincaré series by

Pig)= > f(r9)-

nH\I

PROPOSITION: Let f € C(H\G)NL'(H\G). Assume that there exists a smooth
compactly supported function a on G such that a  f = f. Then the series Py

converges uniformly and absolutely to a smooth function.
Proof: (Godement) We have that

fg) = /G a(g™'2)f(z)dz = /F DRV

'nH

Therefore

ale vz z)idz.
Y 1)l < /F nm;l (o~ 72)(|f(2)ld

FnH\T
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Let C; be the support of a. Let C be a compact set. If g € C and g~ 712,97 122
€ C) then g7'1177'g = g7 'm1z(9 7 y22) ™! € C1C7'. Hence ;' € CCCT!
C~'. Let B =T NCCiC;'C!. We have

Y 1f(v9)l S Bvol(T N H\H)|f|l; forall g € C.
CnH\T

Therefore Py converges absolutely and uniformly. Since a* f = f Fubini theorem

implies that a * Py = Py, hence Py is a smooth function. |
It is not a priori clear that Py # 0. We have the following proposition:

PROPOSITION: Let f be a function on TN H\T such that f(1) # 0 and the series
Sra mr f(7) converges absolutely. Then there is a subgroup T of finite index
in I’ such that

> fy) #o.

T'AH\IY
Proof: Let T; be a sequence of subgroups in I such that [I' : T;] < 00,T'; D T'iyq

and NI; = 1. By the Lebesgue dominated convergence theorem it follows that
Im Y0 f(y) = f(D).
FinH\T;
The proposition is proved. i

Recall that G was the connected component (in topological sense) of the real
points of an algebraic group. To define an arithmetic group I' in G suffices to
find an algebraic group G over Q such that G = G(R)° and a Q-embedding p of
G into GL,. Then T'= GNp~1(GL,(Z)) is arithmetic. Fix G and H C G defined
over Q such that G = G(R)? and H = H(R)".

THEOREM: If T is an arithmetic subgroup of G such that I' N H\H is compact

then Py is a cusp form. Here m > 1.

Proof: A parabolic subgroup P = MAN is said to be cuspidal if T N N\N is

compact. Recall that Py, is a cusp form on G if and only if

/ Py, (ng)dn =0
T'NN\N

for all cuspidal parabolic. Let P = M AN be a cuspidal parabolic. Let P = MAN
be a cuspidal parabolic. We claim that HNN = {1}. Assume not. Since TNN\N
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is compact it follows that N is defined over Q. Therefore H N NV is defined over
Q as well. As an algebraic group H N N is just a vector space. The Hilbert
theorem 90 implies that ' N H NN # {1}. But this is impossible since I' N H\H
is compact and therefore I' N H contains no nontrivial unipotent elements. For
the same reason YNy~! N H = {1} for all v € T. Since

P; (ng)dn = TNy =
/rnN\N fm(n9) Yoo N gy =0

TnH\T/TAN
the theorem is proved. |

The first question is the existence of I' noncocompact in G such that T' N H is
cocompact in H. Let § = SO(q) and H = SO(q1) where ¢ and ¢; are rational
quadratic forms in n + 2 and n + 1 variables of R-index 1. So we ask that ¢; be
totally anisotropic over Q. Since over p-adics all forms in at least 5 variables are
isotropic, it follows from Hasse-Minkowski that n = 2 or 3. In those two cases

we make the following choices:

2,2 .2
=3z + 27 + 3

2
N E + 22 +.1:§ + z3

n=2 q= -3z + 2} 4+ 22 + 22 N

n=3 q=-T2+22+2+4+22+22 g

The anisotropicity of ¢;(n = 3) follows from the following classical result [S]-
(p-45):

PROPOSITION: Ifr = z? 4+ z2 + 22 where 1, 72,23 are rational then r is a square

in Qz.
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