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ABSTRACT 

Let G and  H C G be two real semis imple  groups  defined over Q.  As- 

s u m e  t h a t  H is the  g roup  of poin ts  fixed by an involut ion of G. Let 

7r C L2(H\G) be an  irreducible representa t ion  of G and  let f E ~ be  a 

K-f in i te  funct ion.  Let F be an a r i thmet ic  s u b g r o u p  of G. T h e  Poincar~ 

series PI(g) = ~-~HnF\F f (Tg)  is an  au tomorpb ic  form on F \ G .  We show 

t h a t  P$ is cuspidal  in s o m e  cases, when  H N F \ H  is compac t .  

Introduction 

Let G be a real simple group defined over Q and P an arithmetic subgroup. Then 

F \ G  has a finite volmne. Let P be a maximal parabolic subgroup in G and let 

N be its unipotent radical. The subgroup P is called cuspidal if F 71 N\N is 

compact. Let L02(F\G) be the space of square integrable functions f on F \ G  

such that 

fr f(ng)dn = 0 
nN\N 

for all cuspidal parabolic subgroups of G. It is well-known that L0~(F\G), the 

space of cusp forms, decomposes as a sum of irreducible representations of G. 

Let 7- be an involution on G and H the group of points fixed by V. Put  X = 

H\G. Let L~(X) be the maximal submodule of L2(X) such that it decomposes 

as a sum of irreducible representations of G. The description of L~(X) is known 

and it is due to Flensted-Jensen, Oshima and Matsuki. 
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(*) 

Let f E L~(X). 
convergence): 

Let P be a maximal parabolic subgroup of G such that H N N = {1}. Put  

M1 = HNP. There is a Langlands decomposition P = MAN such that M1 C M. 

Let f E L2(X). Consider 

fN(g) = IN f(ng)dn. 

Obviously, fly might not be defined for every f but we are going to ignore this 

problem for a moment. Note that fg is a function on M1N\G. Since the 

group A acts from the left on L2(MIN\G), the spectrum of G on L2(MIN\G) 
is continuous and therefore the intertwining map f ~-~ fN should vanish on the 

discrete spectrum L2a(X). 
Next, suppose that H is Q-compact. Then F N H\H is compact. In that case 

the following implication is a simple consequence of the tiilbert theorem 90: 

F fq N\N is compact =~ H fq N = {1} 

Consider the Poincar~ series (disregarding the question of 

P i ( g )  = 

Hnr\ r  

In view of the statement (*) the cuspidality of PI follows at once from the van- 

ishing of fN. 
In this paper we study the case G = SOo(n q- 1, 1) and H = SOo(n, 1). In the 

first section we give a construction of a part of L2d(X) following Flensted-Jensen 

IF]. In the second section we study some convergence questions related to the 

study of the map f ~-~ fN.  In the third section we show the vanishing of fN for 

integrable discrete series. In the fourth section we construct examples of cusp 

forms. Unfortunately, by Hasse-Minkowski theorem, an arithmetic subgroup 1 ~, 

such that F \ G  is not compact and such that H fq F \ F  is compact can be chosen 

only for n = 2 and 3. In the case n = 3, the cusp forms of S0(4, 1) obtained are 

non-tempered. 

A classical way to construct automorphic forms is via O-lift. Since the spec- 

t rum of SOo(n + 1, 1) on L2(X) can be described as the O-lift from SL(2) (see 

[H]), it is natural to conjecture that the cusp forms constructed in this paper 

are the O-lift of automorphic forms on SL(2). In fact, Piatetski-Shapiro [P] has 

shown that the O-lift from SL(2) gives cusp forms only when n < 3, and this is 

compatible with our results. 
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Finally, the following remark is due. The map f ~-* fN has been used by several 

people, most notably by Harish-Chandra and Gelfand and his collaborators to 

study Plancherel formula for symmetric spaces (see [G]). 

ACKNOWLEDGEMENT: I would like to thank professors I. Piatetski-Shapiro S. 
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NOTATION: For f and g, two positive functions, f × g means that c < Lg < 

for some constant c > O. 

1. Constructions of  discrete series 

Let R be the field of real numbers and q _x0 2 + x2 + . .  2 = • +x,,+z a quadratic form. 

Let G = ,.,COo(q) = SOo(n + 1,1). The Cartan involution 0 on G is given by the 

conjugation by the diagonal matrix diag(-1, 1 , . . . ,  1). Let r be the involution 

given by the conjugation by the diagonal matrix diag(1,. . . ,  1,-1). Let K and 

H be the groups of points fixed by the involutions 0 and 7". Obviously, 

K = S O ( x ~  + . . . + x ~ )  a n d H = S O o ( - z ~  +z~ + . . . + x ~ ) .  

Let Go be the group of points fixed by the involution 0r. Let g denote the Lie 

algebra of G. We have the following decompositions into +1 and -1  eigenspaces 

for 0 and r: 

g = k + p ,  

g = h + q .  

Clearly, k and h are Lie algebras of K and H and go = h N k + q N p is the Lie 

algebra of G0. The vector space q N p is one dimensional. Let S E p Iq q be such 

that 
cosht . . .  s i n h t /  

exp(tS) = " 

\ s i n h t  .. .  co sh t /  

Let L = H f'lK. Then L = SO(x~ + . . .  + x~) mad Go = Lexp(q Mp). Let p be 

a holomorphic representation of Kc  = SO(n + 1, C). Obviously, both H and K 

are subgroups of Kc,  and p induces a representation of K and H. 
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TItEOREM (Flensted-Jensen): [F] There is a bijection fo ~ f between the fol- 

lowing two spaces of functions on G: 

(1) The space of real analytic functions f on H \ G  which transform as p under 

the action of K from the right. 

(2) The space of t ea / ana ly t i c  functions fo on K \ G  which transform as p 

under the action of H from the right. 

The bijection is characterized by f [ Go = fo [ Go. Moreover, if f ° is equivariant 

under the action of Z(g) ,  the center of the universal enveloping algebra/ . / (g) ,  

then f is Z(g)-equivariant as well. 

Therefore, to construct a representation on H\G,  we have to construct f0.  

First, we recall the construction of principal series representations for H.  Let 

2 Then H = SOo(ql). Let e be a vector such that  ql = - x 0  ~ + x  2 + ' " + z . .  

ql(e) = 0. Let P = M A N  be the subgroup of H stabilizing the line Re.  Then 

P is a parabolic subgroup and A could be identified with R + as follows: Let n 

be the Lie algebra of N. If X E n and a E A then Ad(a)X = a(a)X.  The map 

a ~ a(a) is the desired identification. It can be checked that  ae = a(a)e. 

The Principal series Is, s E C is given by the following: 

$ n - 1  

Is = { f :  H ---* C I f (mang)  = a(a) + , f (g ) ,man  e M A N }  

Let V(qa) C R n+l be the cone defined by the equation ql = 0. It is easy to 

see t h a t / - m  .-1 can be also realized as 
2 

I_m_.e ~ = {f  : W(ql) ~ C l y(yxo, . . .  ,yxn) = ymf(xo , . . .  ,Xn),y E It}. 

PROPOSITION: Let m be a positive integer. 

dimensiona/representat ion of H.  

Then I_ m .-1 contains a finite 
2 

Proo~ I_ ,n___ 

m. I 

,-1 contains Fm, the space of homogeneous polynomials of degree 
2 

Remark: Note that  Fm contains the L fixed vector given by the function x~.  

Let P be a parabolic subgroup of G such that  A C H and P N H = (M N 

H ) A ( N  Iq H) is a parabolic subgroup of H.  Let J ,  denote the principal series 

representation for G: 

Js = { f :  G ~ C I f (many)  = c~(a)a+~f(g),man E M A N } .  
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We have a natural H-invariant map J8 --+ Is+½ given by f ~-~ f IH. Recall that 

there is an H-invariant pairing 

( , ) : I ,  x I _ ,  .--, C 

given by 

(f" f- ' )  = fL fW)f_,(z)dz, f~. ~ z±.. 

Therefore, we have an H invariant pairing 

( , )  : F,,~ × J,~+g-1 ---+ C 

Let v E I _  m . - 1  and w E Jm+}-I be L and K invariant vector respectively. 
2 

Normalizev and w such that v(1) = 1, l E L and w(k) = 1, k E K. By the 

remark, v E Fro. Define f 0  by the following formula: 

fo(g)  = (v ,g- 'w) .  

The function f o  is not zero since f ° ( 1 )  = volL. It is clearly Z(g)  equivariant, 

right H-finite function on K\G. Let f,n be the function on H\G corresponding 

to f o  via Flensted-Jensen duality. To show that fm generates a discrete series in 

L2(H\G) suffices to check that fm is square integrable. We need the following 

proposition: 

PROPOSITION ([F]): Let dh and dk be the Haar measures on H and K. We have 
the following integration formula on G: 

/af(g)dg = /H /R /Kf(hexp(tS)k)dkc°sh" tdtdh" 

Since K is compact to check the integrability of fin suffices to show that 

R If°(exp tS)l 2 cosh" t d t  < oo. 

We have that 

f°,(exp t S) = fL w( l exp(-tS) )dl = vol( L )w( exp(-tS) ) 
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since L is a normal subgroup of Go. To compute w(exp(-tS)) we have to write 

exp(-t,,q) = mnak. Let 

el = E R n+2 

and P be the parabolic stabilizing the line Rcl. Let I[ 11 be the norm on R n+2 

given by x0 2 + x~ +... + x~+,. If g = mnak then [[g-le, I[ = a(a)-'Ile111. Since 

Ilexp(tS)e,l[ 2 = cosh2t it follows that If°(exptS)[ × (cosh2t)-½ (m+"-O × 

(cosh t) -(re+n-l). Therefore, we have obtained the following theorem: 

THEOREM: The function fm generates a discrete series representation in 

L~(H\G) if m > O. The function f,,, is integrab]e i f m  > 1. 

2. T h e  c o n s t a n t  t e r m  

Let f~ E Z ( g )  be the Casimir operator. Then 12f,~ = A,,f , ,  for some real number  

A,,~. Let P = M A N  be a parabolic subgroup of G such that  H N N = {1}. Let 

f be a function on H\G. Define fN,  the constant term of f :  

fN(g) = IN f(ng)dn. 

The purpose of this section is to prove the following 

PROPOSITION: Let m > O. Then fN is a smooth function and f~fN = AmfN. 

The proof consists of several steps. Any g E G can be written as g -- 

hexp( tS)k .  Consider the vector 

The stabilizer of e2 in G is precisely H.  On the other hand (cosh sinh   (sin t) 
e 2  ~-- 

sinht  . . .  c o s h t ]  cosht 
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Therefore  Hg-ie2][ 2 = cosh2t  × cosh2t.  Let C be any compac t  subset  in G. 

T h e n  

[fm(ng)[ X I lg-ln--le2ll  - ( m + = - l )  X II.-le~ll - ¢ ~ + = - ' )  for all g e C. 

If we can show tha t  ][n-le2]] - ( m + ' - l )  is an integrable funct ion on N then ]f, nI N 

is a continuous funct ion by  the Lebesgue domina ted  convergence theorem.  We 

need the  following: 

LEMMA: Let [ [ be any norm on n, the Lie algebra of  N .  Let  X E n. Then 

II expEX)e2 II × IXl 2, 
2 Proof." To s tudy  N we choose the form q = x~ + - . .  + x .  - 2x0xn+l .  Then  n 

can be chosen so tha t  an element  X E n has the form 

/0xi x i/x 
X =  

Then  X 2 = [X[2Y where 

2 and IXl ~ = x~ + - , .  + z . .  

Y=(° ::: i). 
By direct observat ion,  if e is a vector  such tha t  Y e  = 0, then there exists X E n 

such tha t  X e = O. 

C1aim: If  e is a vector  such tha t  S t a b a ( e )  = H and H M N = {1} then Y e  # O. 

Indeed,  if Y e  = O, then  there  would be X E n such tha t  X e  = 0 as well. Hence 

e x p ( X ) e  = e and e x p ( X )  E H which is a contradict ion.  We can now finish the 

proof  of the lemma:  

IXI2 Ye~ 
II e x p ( X ) e 2 t l - -  lie2 + X e 2  + T II × Ix l  2. I 

Let B be a uni t  ball in n. If m > 0 then  

j [  JX l - (2"+2n-2 )dX  < ¢x~. 
- B  

Therefore  If,,, I N is a continuous function. 
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Proofo£the Proposition: It is well known that there exists a smooth compactly 

supported function a on G such that c~ • f m  = f,n. Here 

• fro(g) = £ o~(x)fm(gz)dz. Ol 

Since Ifml N is continuous and c~ compactly supported function, it follows from 

Fubini theorem that 

fm N = fro) N = " *  f t .  

Since X ( a  * f ~ )  = (Lxo 0 * f ~ ,  where Lx  denotes tile differentiation from the 

left, it follows that f ~  is a smooth function and f~f~ = )h~fm N. The proposition 

is proved. I 

3.  T h e  van i sh ing  r e s u l t  

Let P = M A N  be a parabolic subgroup in G such that H N N = {1}. In this 

section we prove the following theorem: 

THEOREM: If m > 1 then f ~  - O. 

We need the following proposition. 

PROPOSITION: Let P = M A N  be a parabolic subgroup of G such that H n N = 

{1} Let o denote the origin (H1) of the space H\G. Then 

(1) oNA is an open set in H\G 

(2) fN  E C ~ ( N M \ G )  i.e. f N is left M invariant. 

Proof." It is easy to see that dim H\G = dim NA. Let Ax = H N NA. If A1 # 0 

then A1 ~ A since A1 O N = {1} and A is connected. Let al be the Lie algebra 

of AI. We have the triangular decompositions 

g = n ~ - + m l + a l + n l  and h = n ~ - n h + m l O h + a l + n l n h .  

Obviously nx = n. Since nl O h # 0 we get n N h # 0, a contradiction. The 

first part  is proved. To prove the second part, let M1 = H O P. Then dimM1 = 

d imM.  Since M1 n N A  = {1} and M is connected we get M1 ---* P \ N A  = M is 

an isomorphism. The proposition is proved. I 

Proof of the theorem: Consider the function ~(a) = f~ (a ) ,a  E A. We claim 

that ~ = 0. 
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LEMMA: Let G be a simple group and P = M A N  a parabolic subgroup. Let 

g = n -  + m + a + n be the corresponding decomposition of the Lie algebra of 

G. There exist D E H(a) of second order such that 

- -  ~ '~M - -  D 6 nc/4(g), 

where ~M iS the Casimir operator for M. I 

Since ~ is G invariant operator we have )~mf, N = f~fN = Lnf,N. The function 

fN is left M and N invariant. Hence Dg~ = ,~,,,~o. We know that oNA is an 

open set in H\G. The G invariant measure on H \ G  restricts to N A  invariant 

measure on oNA. Therefore, it is dndXa. Since fm is absolutely integrable 

function on H \ G  it follows that q0 is integrable function on A. On the other 

hand, c 2 is a solution of an ordinm'y differential equation on A and therefore a 

linear combination of exponential functions. In particular, ~ can be integrable 

only if 9~ = 0. The stone conclusion can be obtained for :g (a )  = f,N(ag) for all 

g. The theorem is proved. 

4. Application to cusp forms on G 

Let F be a discrete subgroup of G such that vol(F\G) < oo and vol(r n H \ H )  < 

oo. If f E C(H\G)  0 L I (H\G)  define Poincard series by 

Ps(g) = E f(Tg). 
F n H \ F  

PROPOSITION: Let f E C( H \  G) N L I ( H \  G). Assume that there exists a smooth 

compactly supported function a on G such that a • f = f . Then the series P I  

converges uniformly and absolutely to a smooth function. 

Proof'. (Godement) We have that 

f ( g ) = / a  v~(g-lx)f(x)dx = frnH\G r ~  a(g-17x)f(x)dx" 

Therefore 

rnH\ r  
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Let C1 be the support o fa .  Let C be a compact set. Ifg E C and g-171x,g-l'y2x 

E C1 then g-17172-1g = g-1flz(g-l"12x)-I E C1C1-1. Hence ")'l-Y21 E CC1C11 
C -1. Let/3 = ~F n CCIC~-IC -1. We have 

Z If(Tg)] -</3vol(F N H\H)]IfI]I for all g • C. 
rnH\r  

Therefore PI converges absolutely and uniformly. Since a*  f = f Fubini theorem 

implies that a * PI = PI, hence PI is a smooth function. I 

It is not a priori clear that PI 7 ~ O. We have the following proposition: 

PROPOSITION: Let f be a function on F N H \ F  such that f(1) 7~ 0 and the series 

~ r n H \ r  f(7)  converges absolutely. Then there is a subgroup r t of ~nite index 

in r such that 

r 'nH\r '  

Proof." Let r i  be a sequence of subgroups in F such that [r : I'i] < c~, r i  D r i+ l  

and nI'i = 1. By the Lebesgue dominated convergence theorem it follows that 

l im = f ( 1 ) .  
i---*oo 

r inH\F~ 

The proposition is proved. I 

Recall that G was the connected component (in topological sense) of the real 

points of an algebraic group. To define an arithmetic group F in G suffices to 

find an algebraic group G over Q such that G = ~(R) ° and a Q-embedding p of 

6 into GLr. Then F = GNp- I (GLr (Z) )  is arithmetic. Fix G and 7"/C g defined 

over Q such that G = ~(R) ° and g = 7-/(R) °. 

THEOREM: If  F is an arithmetic subgroup of G such that F O H \ H  is compact 

then PI,, is a cusp form. Here m > 1. 

Proof" A parabolic subgroup P = M A N  is said to be euspidal if F n N \ N  is 

compact. Recall that PI,, is a cusp form on G if and only if 

f r  (ng)dn = 0 
nN\N 

for all cuspidal parabolic. Let P = M A N  be a cuspidal parabolic. Let P = M A N  

be a cuspidal parabolic. We claim that HON = {1}. Assume not. Since F O N \ N  
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is compact it follows that  N is defined over Q. Therefore H n N is defined over 

Q as well. As an algebraic group H n N is just a vector space. The Hilbert 

theorem 90 implies that  F n H n N # {1}. But this is impossible since F N H \ H  

is compact and therefore F n H contains no nontrivial unipotent elements. For 

the same reason 7 N 7  -1 n H = {1} for all 7 E F. Since 

f r  Pf,,(ng)dn = ~ f:g'r- '  (g) = O 
AN\N rnn\r/rnN 

the theorem is proved. I 

The first question is the existence of F noncocompact in G such that  F n H is 

cocompact in H.  Let G = SO(q) and 7"/= SO(q1) where q and ql are rational 

quadratic forms in n + 2 and n + 1 variables of R-index 1. So we ask that  ql be 

totally anisotropic over Q. Since over p-adics all forms in at least 5 variables are 

isotropic, it follows from Hasse-Minkowski that  n = 2 or 3. In those two cases 

we make the following choices: 

n = 2  

n = 3  

q = -3Xo 2 + x 2 + x2 2 + x a  2 

q = - 7 X o  2 + xl 2 + x2 2 + xl + x4 2 

ql = -3x2o + x 2 + x22 

ql = - 7 x  2+x21 +x~ +x  2 

The anisotropicity of ql(n = 3) follows from the following classical result [S]- 

(p.45): 

PROPOSITION: I fr  x~ 2 2 = + x 2 + x  3 wherexl,x2,x3 areratJonalthenrJsasquare 

in Q2. 
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